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1    Introduction 

In this paper, we introduce a new version of the Fast Multipole Method (FMM) for the evaluation 
of potential fields in three dimensions. The scheme evaluates all pairwise interactions in large 
ensembles of particles, i.e. expressions of the form 

for the gravitational or electrostatic potential and 

^i) = E*-ii?f5j3 (2) 
t=l \\£3       *«ll 

for the field, where xi, x2, • ■ •, xn are points in R3, and qi, g2, • • •»In are a set of (real) coefficients. 
The evaluation of expressions of the form (1) is closely related to a number of important 

problems in applied mathematics, physics, chemistry, and biology. Molecular dynamics and 
Hartree-Fock calculations in chemistry, the evolution of large-scale gravitational systems in as- 
trophysics, capacitance extraction in electrical engineering, and vortex methods in fluid dynamics 
are all examples of areas where simulations require rapid and accurate evaluation of sums of the 
form (1) and (2). When certain closely related interactions are considered as well, involving 
expressions of the form 

» ei-k-\\xj-xi\\ 

*(li)=£''"¥7^T' (3) 

the list of applications becomes even more extensive. 
This paper is a continuation (after an interval of several years) of a sequence of joint papers 

by the authors, starting with (Greengard and Rokhlin 1987) and (Carrier et al. 1988) which 
introduced the Fast Multipole Method in two dimensions. Subsequent work extended the method 
to three dimensions (Greengard 1988; Greengard and Rokhlin 1988a,b), and there followed a 
number of versions of the scheme, both by the present authors and by other researchers (see, for 
example, Anderson 1992; Nabors et al. 1994; Berman 1995; Epton and Dembart 1995; Elliott 
and Board 1996). After about ten years of research, however, a somewhat unsatisfactory picture 
has emerged. In short, there now exist extremely efficient algorithms for the evaluation of the 
two-dimensional analogues of (1), (2) with (practically) arbitrarily high precision, as well as 
very efficient and accurate algorithms for a host of related problems (Rokhlin 1988; Alpert and 
Rokhlin 1991; Beylkin et al. 1991; Coifman and Meyer 1991; Greengard and Strain 1991; Strain 
1991; Alpert et al. 1993). However, for the sums (1) and (2), there are few practical schemes, 
and these provide only limited accuracy. Since most real-world problems are three-dimensional, 
it can be said that analysis-based "fast" methods are a promising group of techniques, but that 
they have not yet lived up to all their expectations. 

In the present paper, we try to remedy this situation. We describe a version of the Fast Mul- 
tipole Method in three dimensions that produces high accuracy at an acceptable computational 



cost. As will be seen from the numerical examples in Section 9, the new scheme has a break- 
even point of n ~ 2000 when compared with direct calculation in single precision; with 10-digit 
accuracy, the break-even point is n ~ 5000; with 3-digit accuracy, it is n ~ 500. The approach 
uses a considerably more involved mathematical (and numerical) apparatus than is customary 
in the design of fast multipole-type algorithms. This apparatus is based on a new diagonal form 
for translation operators acting on harmonic functions, extending the two-dimensional version 
introduced in (Hrycak and Rokhlin 1995). The overall approach bears some resemblance to 
that used in fast multipole methods for high frequency scattering problems, which are based on 
diagonal forms of translation operators for the Helmholtz equation (Rokhlin 1990, 1995; Epton 
and Dembart 1995). 

2    Philosophical Preliminaries 

We begin with an overview of analysis based "fast" numerical algorithms, concentrating on the 
evaluation of expressions of the form (1). Where possible, we summarize the current "state of 
the art" in the field. 

If we define the n x n-matrix A by the formula 

^ = jp^ii' (4) 

we can rewrite (1) in the form 
$ = Aq, (5) 

with $,q € Rn (the expression (2) can be rewritten in a similar fashion). Obviously, straight- 
forward evaluation of either of the expressions (1), (2) requires 0(n2) operations (evaluating n 
potentials at n points), and for large-scale problems this estimate is prohibitively large. On the 
other hand, the evaluation of expressions of the forms (1), (2) is an integral part of the numerical 
solution of many important problems in applied mathematics, and during the last decade, several 
"fast" schemes have been proposed for this purpose, i.e. schemes whose computational cost is 
less than 0(n2). Typically, such methods require 0(n) or 0(n- log n) operations (Rokhlin 1985; 
Greengard and Rokhlin 1987; Carrier et al. 1988; Rokhlin 1988,1990; Alpert and Rokhlin 1991; 
Beylkin et al. 1991; Coifman and Meyer 1991; Greengard and Strain 1991; Strain 1991, 1992; 
Epton and Dembart 1995). All of them are based on the straightforward observation that the 
potentials are smooth functions in fi3, except when x; is near Xj, and as a result, large subma- 
trices of A are of low rank (to any finite precision). Clearly, applying a matrix of dimension 
n x n but rank J to an arbitrary vector requires only n • J operations (as opposed to ra2); this 
simple observation leads directly to a variety of asymptotically "fast" schemes for the evaluation 
of (1); below, we illustrate the construction of such schemes with a simple example. 

Suppose that, in the expression (1), the points x\,x2, • • •,xn are equispaced and lie on the 
interval [—1,1], so that 

Xi = -1, Z2 = -l + h, ••-, xn-i = l-h, xn = l, (6) 
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Figure 1: Subdivision of matrix into well-separated blocks. The submatrices marked by an X 
are not well-separated from the diagonal. 

where h = 2/(n — 1). Given three integers /, m, k such that 

1 < / < n, 

1 < m < 7i, 

1 < Jfc < n - /, 

1 < & < n — m, 

we will denote by Aj,mj* the submatrix of A consisting of such elements A{j that 

I   <   »</ + *-l, 

m    <   j < m + k — 1, 

and say that Aj,mjfc is separated from the diagonal if 

| /- (m + k- 1) |>fc, 

(7) 

and 
|m-(f + lb-l) |> Jfc. 

(8) 

(9) 

(10) 

In other words, we will say that the submatrix A/)TO)fc of the matrix A is separated from the 
diagonal if its distance from the diagonal of A is greater than or equal to its own size (Fig. 
1). We will construct a rudimentary "fast" algorithm for the application of the matrix A to an 
arbitrary vector by means of the following lemma; its proof is based on several well-known facts, 
all of which can be found in (Dahlquist and Bjork 1974). 



Lemma 2.1 For any integer p < 1, and any l,m,k satisfying the conditions (7), there exists a 

matrix Bijm,k of dimension k xk and rank J, such that 

||>W-£/,m,*||<£r (n) 

In other words, any submatrix of A separated from the diagonal is of rank J, to the precision 

1/4J. 

Outline of proof. 
We start by defining the function / : R2 -*■ R1 by the formula 

'<*■»>-1^7- (12) 

and observing that / is smooth everywhere in R2, except when x = y. We will say that the 
square [a, a + c] X [b, b + c] C R2 is separated from the the diagonal if 

\a + c-b\>c, (13) 

and 
\b + c-a\>c, (14) 

and observe that on any such square, the function / can be expanded in a two-dimensional 
Chebychev series, i.e. represented in the form 

p,q=0 

with Tj denoting the j-th Chebychev polynomial. Finally, we observe that for any a, 6, c satisfying 
the conditions (13), (14), the convergence of the expansion (15) is given by the formula 

«^ m/2-x     c + 2-a,   „,2-y     c + 2-b 1 ,   , 

p,g=0 

In other words, for any square separated from the diagonal, the expansion (15) converges to 
accuracy e after no more than log4{e) terms. Combining (9), (10) and (1) with (15) and (16), 
we observe that for any i,j satisfying the inequalities (8), 

I.         V^„     T(2-Xi     £±j:a\   T(
2'yj     C+2'b)\-1 (17) I Mi - 2s avi • TP(— —f'1^—^- c     il

<
4J' W 

p,q=0 

with o = (2 • l)/n - 1, b = (2 • m)/n - 1, c = (2 • k)/n. The matrix Bi,m,h defined by 

/„      N        v^ rr,2-xi     c + 2-a,  T(2-yj     c + 2-b (    . 
c 

p,?=0 



clearly satisfies the desired condition  (11). 
D 

In order to develop a fast algorithm, we first subdivide the matrix A into a collection of 
submatrices, as depicted in Fig. 1. Each of the submatrices in this structure is separated from 
the diagonal, except the submatrices near the diagonal whose ranks are small simply because 
their dimensionality is small. By virtue of Lemma 2.1, each of the separated submatrices is 
of rank «7, to the accuracy 4~J. In order to apply A to an arbitrary vector with fixed but 
finite accuracy (which is always the case in numerical computations), we can apply each of the 
submatrices to the appropriate part of the vector for a cost proportional to k • J, where k is the 
size of the submatrix. Adding up the costs for all such submatrices, we obtain the operation 
count of 

J -n-log(n)~ log(-) -n-log(n), (19) 

instead of n2. 
The scheme outlined above is extremely simple, but representative of the current approach 

to the design of "fast" summation algorithms. Several comments are in order. 
1. It is easy to see that the matrix A defined in (4) with the spacing defined by (6) is in fact a 

Toeplitz matrix that can be applied to an arbitrary vector for a cost proportional to n • log (n) via 
the Fast Fourier Transform. This situation occurs sometimes, both in one and higher dimensions. 
However, the Toeplitz nature of the matrix A is lost when the points are not distributed on a 
uniform grid, and direct application of the FFT becomes impossible. For "somewhat uniformly" 
distributed points x8-, various types of local corrections have been successfully utilized. When the 
points are not distributed uniformly (for example, on a curve or surface), FFT-based methods 
become ineffective. 

2. As described, the scheme is only applicable to one-dimensional problems, and under very 
limited conditions. In most situations, the subdivision of the matrix has to be modified, taking 
into account the geometric distribution of points in order to locate submatrices whose "numerical 
rank" is low. Examples of such subdivisions can be found in (Carrier et al. 1988; Van Dommelen 
and Rundensteiner 1989; Beylkin et al. 1991; Nabors et al. 1994) 

3. The scheme is extremely simple and general. It is entirely unrelated to the detailed nature of 
the matrix A, needing only some inequality like (16). In other words, so long as the entries of 
the matrix A are smooth functions of their indices away from the diagonal, a scheme of the type 
outline above will work. In fact, even that is not necessary; the elements of the matrix have only 
to be sufficiently smooth functions of their indices on a sufficiently large part of the matrix. 

4. The scheme admits a large number of modifications; the most obvious ones replace the Cheby- 
chev expansion in (15) with other approximations; one should be careful in doing so, since under 
many conditions the Chebychev approximation is optimal (among polynomial approximations), 
or nearly so. Some of the special-purpose approximation schemes which have been used success- 
fully employ wavelets and related bases (Beylkin et al. 1991; Alpert et al. 1993). 

Another obvious modification is a change in the choice of submatrices of low rank; the use of 



rectangular subraatrices (as opposed to the square ones in Fig. 1) permits coarser subdivisions 
and tends to result in more efficient algorithms. 

5. Algorithms of the type described above usually do not work for problems where the matrix 
A is a discretization of an integral operator with an oscillatory kernel, since such discretizations 
(normally) have a more or less constant number of nodes per wavelength of the dominant os- 
cillation. As a result, the rank of each submatrix is proportional to its size, and the resulting 
algorithms have CPU time estimates of the order 0(n2). Sometimes, the calculation can be accel- 
erated by reducing the size of the constant (Wagner et al. 1994), but the asymptotic complexity 
in such cases is the same as for the direct approach. For certain classes of oscillatory problems 
(such as Helmholtz and Schrödinger equations at high frequency), there exist asymptotically 
"fast" schemes based on a different (and considerably more involved) analytical apparatus (see, 
for example, Rokhlin 1988, 1990, 1993; Canning 1989, 1992, 1993; Coifman and Meyer 1991; 
Bradie et al. 1993; Coifman et al. 1993, 1994; Wagner and Chew 1994; Epton and Dembart 
1995). As noted in the introduction, these schemes are related to the scheme we will present 
below. They are, however, outside the scope of this paper. 

3    Mathematical Preliminaries I 

In this section, we briefly derive the multipole expansion of a charge distribution and refer 
the reader to Kellogg (1953), Jackson (1975), Wallace (1984), and Greengard (1988) for more 
detailed discussions. 

If a point charge of strength q is located at P0 = (x0, y0, z0), then the potential and electro- 
static field due to this charge at a distinct point P = (x, y, z) are given by 

H 

and 

respectively, where R denotes the distance between points P0 and P. 
We would like to derive a series expansion for the potential at P in terms of its distance 

from the origin r. For this, let the spherical coordinates of P be (r, 9, <f>) and of P0 be (p, a, ß). 
Letting 7 be the angle between the vectors P and P0, we have from the law of cosines 

R* = r2 + p2-2rp cosy, (22) 

with 
cos 7 = cos 8 cos a + sin 6 sin a cos(<£ — ß). (23) 

Thus, 
1  1 1 X (24) 



having set 
fj, = -    and   u = cos 7 . (25) 

r 
For fi < 1, we may expand the inverse square root in powers of fi, resulting in a series of the 
form _ 

i °° 

where „ 1 

Po(«) = l,    Pi(«) = t»,    P2(u) = -(u2 --),••• (27) 

and, in general, P„(w) is the Legendre polynomial of degree n. Our expression for the field now 
takes the form 

s-E^-w- (2S) 
n=0 

The angular parameter u, however, depends on both the source and the target locations. 
A more general representation will require the introduction of spherical harmonics, which are 
solutions of the Laplace equation obtained by separation of variables in spherical coordinates. 
Any harmonic function $ can be expanded in the form 

^EE (o-n+^W(M). (29) 
n=0 ra=—n 

The terms Y™{6,<j>)rn are referred to as spherical harmonics of degree n or solid harmonics, 
the terms Y™(0, <f>)/rn+1 are called spherical harmonics of degree -n - 1 or multipoles, and the 
coefficients L% and M™ are known as the moments of the expansion. 

The spherical harmonics can be expressed in terms of partial derivatives of 1/r (Wallace 
1984) as 

}lm = Ao.*L(1-). (30) 
rn+l *n    Qzn\r)   • ^     > 

For m > 0, we have 

and 

where 

Yn
m(9,<i>) _Am ,d     d    (d y~m n\ , , 

-^--A»-{Tx + %]  KTz)     W' (31) 

r(M) _  Am    ,d        :d.m(d 
rn+l ~An    {dx    %dy}    \dz)        \r)  ' 

(32) 

Am = ^   ^" . (33) 
n      V(n-m)!.(n + m)! 

They also satisfy the relation 

Y™*> S V'^TH)] • P^{cos9)e^, (34) 



where we have omitted the normalization factor of y/(2n + 1)/4TT, to match the definitions (30) 
- (32) given above. The special functions P£ are called associated Legendre functions and can 
be defined by the Rodrigues' formula 

Jm 

Theorem 3.1 (Addition Theorem for Legendre Polynomials) Let P and Q be points with 
spherical coordinates (r, 9, <f>) and (p, a, ß), respectively, and let 7 be the angle subtended between 

them. Then 

Pn(cosT)=   £ Y^>,/3) • F™(*,<£) . 

Combining Theorem 3.1 and eq. (28), we have 

1 00        n 

| = EE pnYn-
m(<*,ß) 

Y?{0A) 
rn+l 

(35) 

(36) 
n=0 m=—n 

It is now straightforward to expand the field due to a collection of sources in terms of 

multi poles. 

Theorem 3.2 (Multipole        Expansion). Suppose      that      k       charges      of 
strengths {?,-, i = 1,..., k} are located at the points {Q; = (pi, ah ft), i = 1, •••, k}, with |p,-| < a. 
Then for any P = (r, 0, <j>) € R3   with r > a, the potential $(P) is given by 

00      n      Mm 

w = E E £?r-nm(M), 

where 

Furthermore, for any p > 1, 

n=0 m=—n 

k 

I 
j'=l 

M^Er/'f-rKft). 

*(P)-t E ;£fe-nm(M) 
n=0 m=—n 

<^-(s 
~ r — a \r 

, p+i 

■; 

where 

A = EN 

(37) 

(38) 

(39) 

(40) 
i=i 

Proof:    The formula (38) follows from eq. (36) and superposition. The error bound is obtained 
from the triangle inequality and the fact that the ratios pi/r are bounded from above by a/r. D 

Suppose now that r = 2a in the context of the preceding theorem. Then the error bound 

(39) becomes 
v     n    M™ 

n=0 m=—n 

and setting p = log2(l/e) yields a precision e relative to the ratio A/a 

**GT- (41) 

8 



4    An N log iV Algorithm 

Theorem 3.2 is all that is required to construct a simple fast algorithm of arbitrary precision. 
To reduce the number of issues addressed, we assume that the particles are fairly homogeneously 
distributed in a square so that adaptive refinement is not required. 

In order to make systematic use of multipole expansions, we introduce a hierarchy of boxes 
which refine the computational domain into smaller and smaller regions. At refinement level 0, 
we have the entire computational domain. Refinement level / + 1 is obtained recursively from 
level I by subdivision of each box into eight equal parts. This yields a natural tree structure, 
where the eight boxes at level / +1 obtained by subdivision of a box at level I are considered its 

children. 

Definition 4.1 Two boxes are said to be near neighbors if they are at the same refinement 
level and share a boundary point (a box is a near neighbor of itself). 

Definition 4.2 Two boxes are said to be well separated if they are at the same refinement 
level and are not near neighbors. 

Definition 4.3 With each box i is associated an interaction list, consisting of the children of 
the near neighbors of i 's parent which are well separated from box i (Fig. 4)- 

Definition 4.4 With each box i at level I is associated a multipole expansion $/,; about the box 
center, which describes the far field induced by the particles contained inside the box. 

The basic idea is to consider clusters of particles at successive levels of spatial refinement, 
and to compute interactions between distant clusters by means of multipole expansions when 
possible. It is clear that at levels 0 and 1, there are no pairs of boxes which are well separated. 
At level 2, on the other hand, sixty-four boxes have been created and there are a number of well 
separated pairs. Multipole expansions can then be used to compute interactions between these 
well separated pairs (Fig. 2) with rigorous bounds on the error. In fact, it is easy to see that 
the bound (39) applies with the ratio a/r < l/y/%. Thus, to achieve a given precision e, we need 
to use p = log^j(l/s:) terms. 

It remains to compute the interactions between particles contained in each box with those 
contained in the box's near neighbors, and this is done recursively. We first refine each level 
2 box to create level 3.  For a given level 3 box, we then seek to determine which other level 
3 boxes can be interacted with by means of multipole expansions. Since those boxes outside 
the region of the parent's nearest neighbors are already accounted for (at level 2), they can be 
ignored. Since interactions with near neighbors cannot be accounted for accurately by means of 
an expansion, they can also be ignored for the moment. The remaining boxes correspond exactly 
to the interaction list defined above (Fig. 3). 

The nature of the recursion is now clear. At every level, the multipole expansion is formed 
for each box due to the particles it contains. The resulting expansion is then evaluated for each 
particle in the region covered by its interaction list (Fig. 4). 



X 
s ss       v?" 

-   t " ^ 

Figure 2: The first step of the algorithm, depicted in two space dimensions for clarity. Interac- 
tions between particles in box X and its near neighbors (grey) are not computed. Interactions 
between well separated boxes are computed via multipole expansions. 

Figure 3: The second step of the algorithm, depicted in two space dimensions. After refinement, 
note that the particles in the box marked X have already interacted with the most distant particles 
(light grey). They are now well separated from the particles in the white boxes, so that these 
interactions can be computed via multipole expansions. The near neighbor interactions (dark 

grey) are not computed. 

10 



Figure 4: Subsequent steps of the algorithm. The interaction list for box X is indicated in white. 
In three dimensions, it contains up to 189 boxes. 

Figure 5: At the finest level, interactions with near neighbors are computed directly. In three 
dimensions, there are up to 27 near neighbors. 

We halt the recursive process after roughly log8 N levels of refinement. The amount of work 
done at each level is of the order 0(N). To see this, note first that approximately N p2 operations 
are needed to create all expansions, since each particle contributes to p2 expansion coefficients. 
Secondly, from the point of view of a single particle, there are at most 189 boxes (the maximum 
size of the interaction list) whose expansions are computed, so that 189 Np2 operations are 
needed for all evaluations. 

At the finest level, we have created roughly 8lo8*N = N boxes and it remains only to 
compute interactions between nearest neighbors. By the assumption of homogeneity, there are 
0(1) particles per box, so that this last step requires about 27 N operations (Fig. 5). The total 
cost is approximately 

189iVlog8JV + 27iV. (42) 

The algorithm just described is, in essence, a nonadaptive version of the one proposed by 
Barnes and Hut (1986), except that it achieves arbitrary precision through the use of high 

11 



order expansions. Two-dimensional schemes of this type are due to Van Dommelen and Run- 
densteiner (1989) and Odlyzko and Schönhage (1988). Unfortunately, while such schemes have 
good asymptotic work estimates, the three-dimensional versions provide only modest speedups 
at high precision for the values of JV encountered in present day applications. At JV = 100,000, 
for example, seven digits of accuracy require p « 20, and the JV log JV scheme is only two to three 
times faster than the direct 0(N2) method. In order to significantly accelerate the calculation, 
we need some further analytic machinery. 

5    Mathematical Preliminaries II 

The FMM relies on three translation operators, acting on either multipole (far field) or solid 
harmonic (local) expansions. They are described in the next three theorems (Greengard and 

Rokhlin 1988a; Greengard 1988). 

Theorem 5.1 (Translation of a Multipole Expansion) Suppose that I charges of strengths 
9i,92, •••,?/ are located inside the sphere D of radius a with center at Q = {p,a,ß), and that 
for points P - (r, 8, <f>) outside D, the potential due to these charges is given by the multipole 

expansion 
oo       n /ym 

where P -Q = (r', 6', <f>'). Then for any point P = (r,0,<£) outside the sphere Di of radius 

(a + p), 

^)-EE|-*^ <44> 
j=0 k=-j 

where 
^    i n      Qk-rn . t-W-|m|-l^ml . A% • A$£ • A" ' ^K ß)   ^ ^ 
3 £—*    L-^ A ■ 

1J= L. 2^  AT 
n=0 m=—n 3 

with A% defined by eq. (33). Furthermore, for any p>l, 

P        3Mk 

j=0k--j 
- yr-(a+P)j V 

EUl«l \fa±E\p+1 
(46) 

Definition 5.1 The linear operator mapping old multipole coefficients {O}}, j = 0,.. .,p and 

k = -j,..., j, to new multipole coefficients {Mf}, j = 0,..., p and k = - j,..., j, according to 

eq. (45) will be denoted by TMM- 

Theorem 5.2 (Conversion of a Multipole Expansion into a Local Expansion) Suppose 
that I charges of strengths glt q2, • • •, qi are located inside the sphere DQ of radius a with center 
atQ = (p,a,ß), and that p > (c+ l)o with c > 1. Then the corresponding multipole expansion 

12 



(43) converges inside the sphere Do of radius a centered at the origin. Inside Do, the potential 
due to the charges qi, q2, • • •, qi is described by a local expansion: 

oo       1 

where 

j=0k=-j 

n=0 m=—n 

with A* defined by eq. (33). Furthermore, for any p > 1 

v     i 

j=0k=-j 

< TLI\H\\ (iy+1 

ca ̂ ) ©' 

(47) 

(48) 

(49) 

Definition 5.2 The linear operator mapping truncated multipole expansion coefficients {Oj}, 
j = 0, ...,p and k = —j,...,j, to local coefficients {Lj}, j — 0, ...,p and k = -j,...,j, 
according to eq. (48) will be denoted by TML- 

Theorem 5.3 (Translation of a Local Expansion) 
Let Q = (/>, a, ß) be the origin of a local expansion 

n=0 m=—n 

where P = (r,0,<£) andP-Q = (r',0',<£')• Tfcen 

j=0k=-j 

(50) 

where 
V        n      Qm . i|m|-|m-fc|-|fc| .  >»*»-* . ^ . ym"fc(a  3) • Dn~j 

(51) 

(52) 

with A* defined by eq. (33). 

Definition 5.3 The linear operator mapping old local expansion coefficients {0%}, n = 0,.. .,p 
and m = — n,..., n, to new local expansion coefficients {L%}, n = 0,... ,p and m = —n,..., n, 
according to eq. (52) will be denoted by TLL- 

13 



6    The original FMM 

We can now construct a scheme with cost proportional to N, by using Theorem 5.2 to convert 
the far field expansion of a source box into a local expansion inside a target box, rather than by 
direct evaluation of the far field expansion at individual target positions. 

Definition 6.1 With each box i at level I is associated a local expansion */>t- about the box 
center, which describes the potential field induced by all particles outside box i's near neighbors. 

Definition 6.2 With each box i at level I is associated a local expansion #/,,- about the box 
center, which describes the potential field induced by all particles outside the near neighbors of 

i's parent. 

ALGORITHM 

[Comment The parent of a box j will be denoted by p(j). The list of children of a box j will be 
denoted by c(j). The interaction list of a box j will be denoted by ilist(j).] 

Upward Pass 

Initialization 

[Comment Choose number of refinement levels n » log8 N, and the order of the multipole expansion 
desired p. The number of boxes at the finest level is then 8n, and the average number of particles 

perboxiss = iV/(8n).] 

Step 1 

[Comment Form multipole expansions $„,; of potential field due to particles in each box about the 

box center at the finest mesh level, via Theorem 3.2.] 

Step 2 

For levels / = n — 1,..., 2, 
Form multipole expansion <£>/j about the center of each box at level / by 
merging expansions from its eight children via Theorem 5.1. 

$*J = E*ecM«(i) TMM$l+l,k- 

Downward Pass 

Initialization 

Set ¥M = #i,2 = • • • = #1,8 = (0,0,..., 0). 
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StepS 

For levels 1 = 2,..., n, 
Form the expansion tyj for each box j at level /, 
by using Theorem 5.3 to shift the local \P expansion 
of j's parent to j itself. 

*/J = TLL^l-l,p(j)- 

Form \P/j by using Theorem 5.2 to convert the 
multipole expansion $jtfc of each box k in the 
interaction list of box j to a local expansion about 
the center of box j, adding these local expansions together, 
and adding the result to tyj. 

*'J ~ *'J + T,k€iiist(j) TML$it- 

Step 4 

For each particle in each box j at the finest level n, 
evaluate \Pnj at the particle position. 

Step 5 

For each particle in each box j at the finest level n, 
compute interactions with particles in near neighbor boxes directly. 

Since s is the average number of particles per box at the finest level, there are approximately 
N/s boxes in the tree hierarchy. Therefore, Step 1 requires approximately Np2 work, Step 2 
requires (N/s)p4 work, Step 3 requires 189(N/s)p4 work, Step 4 requires Np2 work, and Step 
5 requires 27N s work. Thus, a reasonable estimate for the total operation count is 

191 (—S\p4 + 2Np2 + 27Ns. (53) 

With s = 2p2, the operation count becomes approximately 

150Np2. (54) 

This would appear to beat the estimate (42) for any N, but there is a subtle catch. The 
number of terms p needed for a fixed precision in the N log N scheme is smaller than the number 
of terms needed in the FMM described above. To see why, consider two interacting cubes A 
and B of unit volume, with sources in A and targets in B. The worst-case multipole error 
decays like (\/3/3)p, since \/3/2 is the radius of the smallest sphere enclosing cube A and 3/2 
is the shortest distance to a target in B.  The conversion of a multipole expansion in A to a 
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local expansion in B, however, satisfies an error bound which depends on the smallest sphere 
enclosing B as well as the smallest sphere enclosing A. ^From eq. (49), the worst case error is 
less than (0.76)p, although with more detailed analysis, one can show that the error is bounded 

by (0.75)p (Petersen et al., 1995). 
In the original FMM (Greengard and Rokhlin 1988; Greengard 1988), it was suggested that 

one redefine the nearest neighbor list to include "second nearest neighbors," so that boxes which 
interact via multipole expansions are separated by at least two intervening boxes of the same 
size. The error can then be shown to decay approximately like (0.4)''. However, the number of 
near neighbors increases from 27 to 125 and the size of the interaction list increases from 189 to 

875. 
It is clear that the major obstacle to achieving reasonable efficiency at high precision is the 

cost of the multipole to local translations (189p4 operations per box). There are a number of 
schemes which have been suggested for reducing the cost of applying translation operators. The 
simplest is based on rotating the coordinate system so that the vector connecting the source box 
B and the target box C lies along the z-axis, shifting the expansion along the z-axis, and then 
rotating back to the original coordinate system. 

6.1    The FMM using rotation matrices 

We begin with the following obvious result 

Lemma 6.1  Consider a harmonic function given by 

oo       n oo       n       , yrm \ 

<W = £   £   fer" + ^)*T(M), 
n=0 m=—n 

where (r, 0, <f>) are the spherical coordinates of the point P. If we rotate the coordinate system 
through an angle ß in the positive sense about the z-axis, then 

oo        n       / jürm \ 

w = £ £  on+^i krW), 
n=0 m.——n \ ' 

where (r, 0, <j/) are the new coordinates of P, 

L% = L™eimß,    and   M? = M™eimß. 

Definition 6.3 Given a rotation angle ß, the diagonal operator mapping old multipole coeffi- 
cients to rotated multipole coefficients (O™ -+ 0% eimß) will be denoted by Tlz{ß). 

We also need to be able to rotate the coordinate system about the y-axis. 

Lemma 6.2 Consider a harmonic function given by 

oo        n 

n=0m——n 
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where (r, 9, (j>) are the spherical coordinates of the point P. If we rotate the coordinate sys- 
tem through an angle a in the positive sense about the y-axis, then there exist coefficients 
R(n, m, m', a) such that 

oo       n      ( Mm'\ 

n=0m'=—n \ ' 

where (r, 0, (j>f) are the new coordinates of P, 

L%'=   £  R(n,m,m',a)LZ (55) 

and 

M?=   £   R(n,m,m',a)M?. (56) 
TTirr—n 

Proof: See (Biedenharn and Louck 1981) for a complete discussion and for a variety of methods 
which can be used to compute the coefficients R(n, m, m', a). E 

Lemma 6.3 In order to shift a multipole expansion a distance p along the z-axis, one can 
replace eq. (45) with the simpler formula 

^^O^.Al-A,    ■f.YSM (57) 

n=0 3 

In order to convert a multipole expansion centered at the origin into a local expansion centered 
at (0,0,/)), one can replace eq. (48) with the simpler formula 

In order to translate the center of a local expansion from the origin to the point (0,0, p), one 
can replace eq. (52) with the simpler formula 

h = L FipjTÄl ' (59) 

Definition 6.4 Given a rotation angle a, the diagonal operator mapping old multipole coef- 
ficients to rotated multipole coefficients according to formula (55) or (56) will be denoted by 
Tly{a). The special cases of the linear operators TMM, TML, and TLL which shift a distance p 
in the z-direction according to the formulae (57), (58), and (59) will be denoted by TMM(P)> 

r^L{p),andTlL{p)- 
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We can now combine Lemmas 6.1, 6.2 and 6.3 to obtain the desired factorizations of TMM, 

TML, TLL- 

Lemma 6.4 

TMM   =   nz{-ß)ny{-a)r^M{p)ny{a)Tlz{ß), 
TML   =   Kz(-ß)Ky(-a)TML(p)Ky(a)1lz(ß), 
TLL   =   Kz{-ß)Hy{-a)TlL{p)Ky{a)1lz{ß), 

where (p, a, ß) is desired shifting vector. 

Clearly, the cost of applying TMM, TML, or TLL by means of the preceding factorization is 

0(p2) + 0(pz) + 0(p3) + 0(p3) + 0(p2). 

Thus, the total computational cost of the FMM can be reduced to approximately 

191 (j) 3p3 + 2Np2 + 27TVs. 

With s = 3p3/2, the operation count becomes 

270Np^2 + 2Np2. (60) 

7    Mathematical Preliminaries III 

Over the last few years, a number of "fast" or diagonal translation schemes have been developed 
which require 0(p2) work (Greengard and Rokhlin 1988b; Berman 1995; Elliott and Board 1996). 
Unfortunately, these schemes are all subject to certain numerical instabilities. The instabilities 
can be overcome, but at additional cost, the details of which we leave to the cited papers. 

The latest generation of fast algorithms is based on combining multipole expansions with 
exponential or "plane wave" expansions. The reason for using exponentials is that translation 
corresponds to multiplication and, like the earlier fast schemes, requires only 0{p2) work. Un- 
like in the earlier diagonal schemes, however, no numerical instabilities are encountered. The 
two-dimensional theory is described in (Hrycak and Rokhlin 1995), and we present the three- 
dimensional theory here. 

Remark 7.1 A complicating feature of the new approach is that six plane wave expansions will 
be associated with each box, one emanating from each face of the cube. To fix notation, we will 
refer to the +z direction as up, to the -z direction as down, to the +y direction as north, to 
the -y direction as south, to the +x direction as east, and to the -x direction as west. The 
interaction list for each box will be subdivided into six lists, one associated with each direction. 
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Figure 6: The Uplist for the box B (see Definition 7.1). 

Definition 7.1 The Uplist for a box B consists of those elements of the interaction list which 
lie above B and are separated by at least one box in the +z-direction (Fig. 6). The Downlist for 
a box B consists of those elements of the interaction list which lie below B and are separated 
by at least one box in the -z-direction. The Northlist for a box B consists of those elements of 
the interaction list which lie north of B, are separated by at least one box in the -\-y-direction, 
and are not contained in the Up or Down lists. The Southlist for a box B consists of those 
elements of the interaction list which lie south of B, are separated by at least one box in the 
—y-direction, and are not contained in the Up or Down lists. The Eastlist for a box B consists 
of those elements of the interaction list which lie east of B, are separated by at least one box in 
the +x-direction, and are not contained in the Up, Down, North, or South lists. The Westlist 
for a box B consists of those elements of the interaction list which lie west of B, are separated 
by at least one box in the —x-direction, and are not contained in the Up, Down, North, or South 
lists. 

It is easy to verify that the original interaction list is equal to the union of the Up, Down, 
North, South, East and West lists. It is also easy to verify that 

C € Uplist(B)   & 

C € Northlist (B)   «*• 

C € Eastlist(B)   «*■ 

B € Downlist (C) 

B € Southlist{C) 

B e Westlist (C) 

(61) 

Given a source location P = (x0, J/o, Zo) and a target location Q = (x, y, z), our starting point 
is the well-known integral representation (Morse and Feshbach 1953, p. 1256) 

y/{x-xo)2 + {y-yo)2 + {z-zo)* 

— —   [°° e-H
z~zo)   f T eimx-xo)cosa+{y~y0)sina)^a^ 

2ir Jo Jo , 
(62) 
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= f° e-*z-^Jo{\y]{x - x0)2 + {y- 2/o)2) d\, 

valid for z > z§. 
To get a discrete representation, we must use an appropriate quadrature formula. The inner 

integral, with respect to a, is easily handled by the trapezoidal rule (which achieves spectral 
accuracy for periodic functions), but the outer integral requires more care. Laguerre quadrature 
is an appropriate choice here, but even better performance can be obtained using generalized 
Gaussian quadrature rules (Yarvin and Rokhlin 1996). These have been designed with the 
geometry of the interaction list in mind. 

Because of the restriction that z > z0, we will assume, for the moment, that the source P is 
contained in a box B and that the target Q lies in a box C € Uplist(B). The following lemma 
describes several discrete approximations of the double integral in (62) as double sums. 

Lemma 7.1 Let P € B and Q G C € Uplist(B), where B is a box of unit volume. Then 

9 M(k) 

where aj = 2nj/M(k), and the weights wu..., w9, nodes Ai,..., A9, and values M(l),..., M(9) 
are given in section 12, Table 1. (The total number of exponentials required is 109 J 

! 18 M(fc) 

whereoij = 2irj/M(k), and the weights w\,...,wx&, nodes Ax,. ..,Ai8, and values M(1),...,M (18) 
are given in section 12, Table 2. (The total number of exponentials required is 558.J 

. 30 M(k) 
\_± V^    Wk      V^    -Xk[(z-zo)-i(x-x0)eo3aj-(y-yo)smajh < 0.5 • 10~10, (65) 
WfeM(*)£ 

whereaj = 2TJ/M(k), and the weights W!,...,w3o, nodes Ax,..., A30, and values M(1),...,M(Z0) 
are given in section 12, Table 3. (The total number of exponentials required is 1751J 

Remark 7.2 The formulae (63)-(65) are somewhat complex, but have a simple interpretation. 
The outer sums use the generalized Gaussian weights and nodes {w^ A*,} obtained in (Yarvin 
and Rokhlin 1996) to approximate the outer integral (with respect to A), while the inner sums 
use the trapezoidal rule to approximate the inner integral (with respect to a). The number of 
nodes in each inner integral depends on the value Xk for which the integration is being performed, 
and is denoted by M(fc). These are derived from standard estimates concerning Bessel functions 
(Watson 1944, pp. 227, 255; Rokhlin 1995). 
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Remark 7.3 In the remainder of this paper, we will assume that the desired precision e is clear 
from the context and will write 

«(e) M(fc) 
|_L_ _ \^  y^      Wk   c-Afc(z-zo-)ctAfc((g-so)cosa,-+(j/-j)o)Binaj)| < £ (66) 

\rpQ     tiUM{k) 

where otj = 2nj/M{k). This is a mild abuse of notation, since the weights, nodes and values 
M{k) depend on s as well. The total number of exponential basis functions used will be denoted 
by Sexp, so that 

.(*) 

k=i 

Corollary 7.1 Let B be a box of unit volume centered at the origin containing N charges of 
strengths {q\, I = 1,..., N}, located at the points {Qi = (xj, yi, zi), I = 1,..., N). Then for any 
P contained in Uplist(B), the potential ®(P) satisfies 

s(e) M(k) 

|*(F) -2E W{k,j)e-XkZeiX^xcosa'+ysina^\ < Ae, (67) 

where A = YA=\ \ll\ and 

N 
W(k,j) = ^2 qieXkZle-iX»(XlCOsai+y> *»«;) (68) 

l=i 

Corollary 7.2 (Diagonal translation) Let B be a box of unit volume centered at the origin 
containing N charges of strengths {qi, 1 = 1,..., N}, located at the points {Qi = (x/, yi, z/), I = 
1, ...,N} and let C be a box in Uplist(B) centered at (si,yi,zi). For P <=C, let the potential 
$(P) be approximated by the exponential expansion centered at the origin 

s(e) M(k) 
$(P) = £ £ W(kj)e-*k*e*k(*c°s*j+ysm°i) + o(s). (69) 

Jfe=l j=l 

Then 
s(e) M(fc) 

$(P) = 53 £ v'(ib,i)c-A^*-*l)c,"A*W*-*l)co"a>+(w"w),ino''') + 0(s), (70) 

V(k, j) = W(fc, j) c-***ie»A*(*i cosai+vi «in«,-). (71) 

Definition 7.2 T/ie diagonal operator mapping the original set of exponential expansion coeffi- 
cients {W(k, j)} to the shifted exponential expansion coefficients {V(k, j)} according to eq. (71) 
will be denoted by VB-C, where BC = (xi, yi,Zi) is the vector from the center of B to the center 
ofC. 
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In the FMM, we will be given the multipole expansion of a charge distribution for a box B 
rather than the charge distribution itself, and will need to convert it to an exponential expansion. 
This is accomplished by the following theorem. 

Theorem 7.1 Let B be a box of unit volume centered at the origin containing N charges of 
strengths {qi, I = 1, ...,N}, located at the points {Qi = {xi,yi,zi), I = 1, ...,N}. Let P € C € 
Uplist(B) and suppose that the potential $(P) is given as the multipole expansion 

<W = E E ^r-OM). (72) 
n=Om=—n 

Then 
s(c) M(k) 

|$(P) - £ £ W(k,j)e-XkZeiX^xcosa^ysinai)\ < Ae, (73) 
k=l j=l 

where A = £/Ii \qi\ and 

OO oo A/fm 

Proof: The formula (74) follows from the definitions (30) (31) and (32). The estimate (73) 
follows from Corollary 7.1. D 

Definition 7.3 The linear operator mapping a finite multipole expansion {M™}, n = 0,...,p 
and m= -n,...,n,tothe corresponding set of coefficients in an exponential expansion {W(k, j)} 

according to eq. (74) will be denoted by CMX • 

Once the multipole expansion for a source box has been converted into an exponential ex- 
pansion (via Theorem 7.1) and translated to a target box center (via Corollary 7.2), we will need 
to convert the exponential expansion back into a solid harmonic series. The following theorem 
provides the necessary machinery. 

Theorem 7.2 Let B be a box of unit volume containing N charges of strengths {qi, I = 1,..., N}, 
located at the points {Qi = (a?/, yi, z{), I = 1,..., N}. Let P be contained in aboxC € Uplist(B), 
centered at the origin, and suppose that the potential $(P) is given as the exponential expansion 

s{e) M(k) 

$(P) -J2J2 W(kJ)e-
XkZeiXk(xcosaJ+ysinaj)\ <As, (75) 

k=l j=l 

whereA = EiLihl Then 

oo        n 

Mp) ~ E   E  Ln • ynm(0,4>) ■ rn\ < As, (76) 
n=0 wi=—71 
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where 
(-i)\m\ °M ^) 

>/(n-m)!(n + m)! ~ £f 

Proof:     Eq. (77) follows easily from the formula (Hobson 1955, p. 123) 

(z + ix cos a + iy sin a)" = 

r" |P„(COS0) + 2 £ (0"m
(n"

!
m)!(-ir

fnm(cosg) cosm(^ - a)\ , 

where (r, 0, <f>) are the spherical coordinates of the point with Cartesian coordinates (x, y,z). D 

Definition 7.4 The linear operator mapping the set of coefficients in an exponential expansion 
{W(k,j)} to the coefficients in the corresponding truncated solid harmonic expansion {L%}, 
n = 0,...,p and m = -n, ...,n, according to eq. (77) will be denoted by CXL- 

Remark 7.4 Theorems 7.1 and 7.2, like Theorem 5.2, are not quite the right tools needed to 
obtain rigorous error estimates for the FMM. In both cases, we have ignored the fact that the 
multipole and local expansions are truncated. It is straightforward but tedious to derive pre- 
cise estimates, and we ignore this issue in the present paper. We should note that the nature 
of such estimates depends on how the multipole-to-exponential, multipole-to-solid harmonic or 
exponential-to-solid harmonic conversion is carried out. Formulae (74), (77) and (48) are the 
easiest to derive, being the Taylor expansions of the potential $. However, each of these con- 
versions is simply a linear mapping from one set of basis functions to another. The formulae 
(77), (74), and (48) can be shown to correspond to minimizing the L2 error on the surface of 
a sphere enclosing the given source or target box. One could choose a variety of other possible 
projections, such as minimizing the £2 or L^ error on the surface of the corresponding box itself. 

Remark 7.5 By inspection of formula (74), it is clear that the cost of applying the operator 
TMX is p2 s(s) +pSexp. The same is true for the operator TXL- It is also worth noting that fast 
Fourier transforms can be used to reduce the cost of the outer sum in the truncated version of 
formula (74) and the inner sum in the truncated version of formula (77). 

Corollary 7.3 (Multipole to local factorization) Let B be a box of unit volume and C a 
box in Uplist(B). IfTntL is the translation operator converting the multipole expansion centered 
in B to the local expansion centered in C, then 

TML = CXL T>B-C CMX ■ (78) 

Remark 7.6 It is important to note that Lemma 7.1 provides a carefully designed quadrature 
formula which assumes that the source box B has unit volume and that the target is in JB's 
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Upiist. In order to use these quadrature weights and nodes, we need to rescale the multipole 
and local expansions so that the box dimension always has unit volume. To accomplish this, if 

<W = £ £ ^rOM (79) 
n=Om=—n 

is the multipole expansion for a box B of volume d3, we simply write 

n=0 m=—n     V  /    / 

The local expansion for a target box in B's interaction list is accumulated as 

00    j / r \ j 

w = EE^"^)-b  • (81) 
j=Ok=-j v 

Corollary 7.4 (Scaled multipole to local factorization) Let B be a box of volume d3 andC 
a box in Uplist(B), with the vector from the center ofB to the center ofC given by (xi, 1/1,21). 
If TML is the translation operator converting the multipole expansion centered in B to the local 

expansion centered in C, then 

TML = T)d,L CXLVBC CMX Vd,M, (82) 

where 
Vd,MM? = M?/dn+1    ,    Vd,LLZ = LZ/dn, 

andBC = BC/d. 

The cost of a single multipole-to-local translation using the factorization of Corollary 7.4 is 

2p2 + 2p2s{e) + 2pSexp » 2p3, 

since s « p and Sexp « P2- If each translation were carried out in this manner, we would 
not improve on the rotation based scheme discussed in section 6.1. However, one the multipole 
expansion for a box B has been converted to an exponential expansion (via the application of 
Vd,M and CMX), it can be translated to each box in its Uplist at a cost of Sexp « p2 operations. 
Conversely, once a box B has accumulated all the exponential expansions transmitted from its 
Downlist (see eq. (61)), a single application of the operators CXL and Vd,L yields the local 
harmonic expansion describing the field due to the sources in the Downlist of box B (Fig. 7). 

Up to this point, we have considered only the exponential representation needed to shift 
information in the upward (+z) direction. As noted in the beginning of this section, however, 
there are six outgoing directions which need to be accounted for. The most straightforward way 
of generating the appropriate expansions is to rotate the coordinate system so that the z-axis 
points in the desired direction. The following lemma provides the necessary formulae. 
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Multipole Rep. 

Exponential Rep. Exponential Rep. 

Figure 7: In the new FMM, a large number of multipole-to-local translations, costing 0(p3) or 
0(p4) work, can be replaced by a large number of exponential translations, costing 0(p2) work. 

Lemma 7.2 Let B be a box of volume d3 and C a "target" box. Let TML be the translation 
operator converting the multipole expansion centered in B to the local expansion centered in C. 
IfC€ Downlist(B), then 

Tßrn = Vd,L Ky{-n) CXLV-SCCMX K„(*) VdM. 

IfCe Eastlist(B), then 

Tßlst = Vd,LHy{-*/2) CXLVBCCMX Ky{n/2) Vd,M. 

IfC eWestlist(B), then 

T$£st = Vd,L lly(ir/2) CXIPBCCMX Ky{-ir/2) VdM- 

IfCe Northlist{B)s, then 

TNorth = VdL ny(-ir/2) KZ{-TT/2) CXLT>BCCMX Ky^/2) llz{*/2) Vd,M. 

IfCe Southlist(B), then 

TMt
th = Vd,LKy{n/2) Kz(-n/2)CXLV^CMX Ky{~ir/2) KZ(TT/2) VdM, 

where BC is the appropriately scaled vector from the center ofB to the center ofC in the rotated 
coordinate system. The operators 1ZZ and TZy are defined in section 6.1. 

Definition 7.5 Let TML be given by the operator TML defined in eq. (82). Then, for 
Dir £ {Up, Down, East, West, North, South}, we will write 

7'Dir   r\Dir <j> TjDir 
ML - «        L>BC F       ' 
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so that 

QUp  =   Vd,LCXL, 

VUp   =   CMxVd,M, 
QDOWU    =    VdLny(-n)CxL, 

pDown    =    CMxKy(ir)VdM, 

etc. 

We are now in a position to describe the new FMM in detail. 

8    The New FMM 

ALGORITHM 

[Comment The parent of a box j will be denoted by p{j). The list of children of a box j will be 
denoted by c(j). For each box j, the "outgoing" exponential expansion with coefficients {W(n, rn)}, 
n = 1,..., s(e); m = 1,..., M{n), will be denoted by Wj. We will also associate an "incoming" 

exponential expansion with each box, denoted by Vj] 

Upward Pass 

Initialization 

[Comment Choose number of refinement levels n « log8 N, and the order of the multipole expansion 
desired p. The number of boxes at the finest level is then 8n, and the average number of particles 

perboxiss = iV/(8n).] 

Step 1 

Form multipole expansions $„,,- of potential field due to particles in each box about the box center 

at the finest mesh level, via Theorem 3.2. 

Step 2 

Do for levels / = n - 1,..., 2, 
Form multipole expansion $/j about the center of each box at level / by 
merging expansions from its eight children via Theorem 5.1. 

$l,j = 12k€child(j) 7~MM$l+l,k. 
(In applying TMM< "se tne factorization of Lemma 6.4.) 

End do 
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Downward Pass 

Initialization 

Set *!,! = #1,2 = • • • = #1,8 = (0,0,..., 0). 

Step 3A 

Do for levels / = 2,..., n, 
Form the expansion #/j for each box j at level / by using Theorem 5.3 to 
shift the local # expansion of j's parent to j itself. 

(In applying TLL, use the factorization of Lemma 6.4.) 

Set tyj = Vi.j. 

Step SB 

[Comment For each direction Dir = Up, Down, North, South, East, West, the opposite direction 
will be denoted by -Dir, so that -Up = Down, -Down = Up, etc. Thus, if a box B sends an 
outgoing expansion in direction Dir to Box C on its Dirlist, then C can be viewed as receiving the 
expansion from B which is an element of its -Dirlist. (see eq. (61)).] 

Do for Dir = Up, Down, North, South, East, West, 
For each box j at level /, convert the multipole expansion $JJ 

into the "outgoing" exponential expansion for direction Dir. 

Wj = PDir$i,j. 
For each box j at level /, collect the "outgoing" exponential 
expansions from the -Dirlist of box j as an "incoming" 
exponential expansion 

where kj is the appropriately scaled vector from the center of box k to 
the center of box j in the rotated coordinate system. 

For each box j at level /, convert the accumulated "incoming" exponential 
expansion Vj into a local harmonic expansion and add result to #/,j. 

9ij = *ij + QDirVj. 
End do 

End do 

Step 4 

For each particle in each box j at the finest level n, 
evaluate #„j at the particle position. 
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Step 5 

For each particle in each box j at the finest level n, 
compute interactions with particles in near neighbor boxes directly. 

Since we are using the rotation scheme for applying TMM and TLL in Steps 2 and 3A, 
these now require a total of Zp3 (N/s) work, where s is the number of particles per box on the 
finest level. In Step 3B, the applications of the multipole to exponential operators VDtr and the 
exponential-to-local-operators QDir require a total of approximately 6p3(N/s) work, while the 
exponential translations require approximately 189 p2 (N/s) work. The total operation count is 

therefore of the order „ 
189 — p2 + 2 Np2 + 27N s + 6— p3. 

s s 

With s = 2p, the total operation count is about 

150 Np + bNp2 

8.1    Current improvements 

There are a number of ways in which the algorithm described above has been accelerated. Sym- 
metry considerations, for example, allow the pairs of operators {pUppDovmy^ ^p  ort   <p out ^ 
and {pEa3t, -pWesty to be appiied simultaneously. The same is true for the adjoint pairs { QUp, QDo 

etc. Thus, the 6p3(N/s) work needed in Step 3B can be replaced by 3p3(N/s) work. 
Even more significant is the fact that the number of translations per box can be reduced from 

189 to less than 40. To see why, suppose that a box B at level / has eight children, denoted 
Bi,..., B8, and that boxes d,..., Cj lie in the Uplist of each child. In the new FMM described 
above, we accumulated an "incoming" exponential expansion in each box Cj as 

*}, 

8 

I 
fe=l 

ts = E*W*' 
where Wk is the "outgoing" exponential expansion for £&. Repeating this for j = 1,..., J 
requires a total of 8 J translations. Since all translations are diagonal, however, it is easy to 

verify that 

Thus, by first merging the "outgoing" expansions, and then translating their sum to each target 
box Cj, only 8 +J translations are needed. It should be emphasized that this improvement relies 
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on the diagonal form of the operators. One could try to merge expansions in this manner in the 
context of the original FMM, but the local expansion coefficients computed with and without 
merging would not be the same. There would be a significant loss of precision, consistent with 
the error bound (49). 

8.2    Further improvements 

There are several ways in which the scheme can be accelerated which have not been incorporated 
into the existing code. The most significant of these is probably a change in the choice of the 
translation operators TMM and TLL, as well as the multipole-to-exponential and exponential-to- 
local conversion operators CMX and CXL- As mentioned previously, the obvious formulae (45), 
(52), (74), and (77) are obtained via Taylor expansion and are clearly not optimal. Preliminary 
numerical experiments indicate that replacing them with more carefully optimized tools will 
reduce the cost of these calculations within the FMM by a factor of three. Furthermore, the 
improvement described in Remark 7.5 has not yet been implemented; we are using the explicit 
matrix form of the discrete Fourier transform in applying CMX and CXL, rather than the FFT. 

The incorporation of all these modifications is likely to reduce the overall cost by a factor of 
two. 

9 Numerical Results 

The new FMM has been implemented in Fortran 77 and tested on uniform random distributions. 
The results of our experiments are summarized in Tables 1-4, with all times calculated in seconds 
using a Sun Ultra-1/140 workstation. In each table, the first column lists the number of particles, 
the second column lists the number of levels used in the multipole hierarchy, the third column 
lists the order of the multipole expansion used, and the fourth column lists the corresponding 
number of exponential basis functions. Columns five and six indicate the times required by the 
FMM and the direct calculation, respectively, and column seven lists the I2 norm of the error in 
the FMM approximation 

For the largest simulations, with N > 10000, we have carried out the direct calculation on a 
subset of only 100 particles. The stated times, indicated in parentheses, are then computed by 
extrapolation and the errors are obtained by restricting the formula (83) to this subset. 

10 Extensions and Generalizations 

The scheme presented in this paper is not adaptive and assumes that the distribution of points 
is reasonably uniform in space. In order to handle more general distributions, one needs to 
allow some regions to be subdivided to finer refinement levels than others. Adaptive structures 
of this type have been designed by several groups (Carrier et al.   1988; Van Dommelen and 
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Table 1: Timing results for the FMM using fifth order expansions and twenty-eight exponential 

basis functions. 

N Levels P Jexp TFMM Tdir Error 

500 3 5 28 0.18 0.20 4.5 • 10"d 

5000 4 5 28 1.9 20.1 7.6 • 10"3 

40000 5 5 28 20 (1461) 7.0 • 10"3 

300000 6 5 28 175 (82475) 1.3-10"2 

Table 2: Timing results for the FMM using ninth order expansions and 109 exponential basis 

functions. 

N Levels P Jexp TFMM Tdir Error 

2000 
10000 
80000 

3 
4 
5 

9 
9 
9 

109 
109 
109 

1.4 
7.9 
111 

3.37 
83 

(5838) 

1.4 -10-4 

3.6 • 10"4 

4.1 • 10"4 

Table 3: Timing results for the FMM using eighteenth order expansions and 558 exponential 

basis functions. 

N Levels P Jexp TFMM Tdir Error 

4000 
25000 

150000 

3 
4 
5 

18 
18 
18 

558 
558 
558 

8.3 
68 

495 

13.4 
(567) 

(20100) 

1.1 -10-' 
1.5-10-7 

1.9 • 10~7 

Table 4: Timing results for the FMM using thirtieth order expansions and 1751 exponential basis 

functions. 

N 
5000 

50000 

Levels 
3 
4 

30 
30 

Jexp 

1751 
1751 

TFMM 

22 
316 

Tdir 
20.8 

(2280) 

Error 
6.2 
6.2 

10 
10 -12 
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Rundensteiner 1989; Nabors et al. 1994) and we are in the process of incorporating these 
structures into the new FMM. 

While a number of techniques now exist for high frequency scattering problems ( Rokhlin 
1988, 1990, 1993; Canning 1989, 1992, 1993; Coifman and Meyer 1991; Bradie et al. 1993; 
Coifman et al. 1993, 1994; Wagner and Chew 1994; Epton and Dembart 1995), an important 
generalization of the algorithm of this paper is to the calculation of potentials governed by the 
Helmholtz equation at low frequency. By this we mean an environment in which the region of 
interest is no more than a few wavelengths in size, but contains a large number of discretization 
points (for example, due to the complexity of some structure being modeled). Algorithms for 
such problems are currently being designed. 

11    Conclusions 

A new version of the FMM has been developed. It is based on a new diagonal form for transla- 
tion operators, and is significantly faster than previous implementations at any desired level of 
precision. Of particular interest is the fact that high precision calculations have been brought 
within practical reach. 

12    Tables: Quadrature weights and nodes 

Table 5: Columns 1 and 2 contain the nine weights and nodes needed for discretization of the 
outer integral in (62) at three digit accuracy. Column 3 contains the number of discretization 
points needed in the inner integral, which we denote by M(k). 

Node Weight M(k) 
0.09927399673971 0.24776441819008 4 
0.47725674637049 0.49188566500464 7 
1.05533661382183 0.65378749137677 11 
1.76759343354008 0.76433038408784 15 
2.57342629351471 0.84376180565628 20 
3.44824339201583 0.90445883985098 20 
4.37680983554726 0.95378613136833 24 
5.34895757205460 0.99670261613218 7 
6.35765785313375 1.10429422730252 1 
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Table 6: Columns 1 and 2 contain the eighteen weights and nodes for discretization of the outer 
integral in (62) at six digit accuracy. Column 3 contains the number of discretization points 
needed in the inner integral, which we denote by M(k). 

Node Weight M(k) 
0.05278852766117 0.13438265914335 5 
0.26949859838931 0.29457752727395 8 
0.63220353174689 0.42607819361148 12 
1.11307564277608 0.53189220776549 16 
1.68939496140213 0.61787306245538 20 
2.34376200469530 0.68863156078905 25 
3.06269982907806 0.74749099381426 29 
3.83562941265296 0.79699192718599 34 
4.65424734321562 0.83917454386997 38 
5.51209386593581 0.87570092283745 43 
6.40421268377278 0.90792943590067 47 
7.32688001906175 0.93698393742461 51 
8.27740099258238 0.96382546688788 56 
9.25397180602489 0.98932985769673 59 
10.25560272374640 1.01438284597917 59 
11.28208829787774 1.04003654374165 51 
12.33406790967692 1.06815489269567 4 
13.41492024017240 1.10907580975537 1 
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Table 7: Columns 1 and 2 contain the thirty weights and nodes for discretization of the outer 
integral in (62) at ten digit accuracy. Column 3 contains the number of discretization points 
needed in the inner integral, which we denote by M(k). 

Node Weight M(Jfc) 

0.03239542384523 0.08289159611006 7 
0.16861844033714 0.18838810673274 10 
0.40611377169029 0.28485143005306 14 
0.73466473057596 0.37041553715895 18 
1.14340561998398 0.44539043894975 22 
1.62232408412252 0.51100452150290 26 
2.16276138867422 0.56865283856139 30 
2.75739199003682 0.61958013174010 35 
3.40002470112078 0.66481004321965 39 
4.08539104793552 0.70517204769960 43 
4.80897515497095 0.74134967169016 48 
5.56688915983444 0.77392103530415 53 
6.35578243654166 0.80338600122756 57 
7.17277232990713 0.83018277269650 62 
8.01538803542112 0.85469824839953 66 
8.88152313049502 0.87727539085565 71 
9.76939480982937 0.89821948245755 76 
10.67750922034750 0.91780416582368 80 
11.60463289992789 0.93627766216629 85 
12.54977061299652 0.95386940504388 89 
13.51215012257297 0.97079739700556 94 
14.49121482655196 0.98727684670885 97 
15.48662587630224 1.00353112433459 103 
16.49827659770404 1.01980697905712 107 
17.52632405530625 1.03639774457222 110 
18.57124579700721 1.05368191266322 112 
19.63393428118300 1.07219343903929 108 
20.71585163675095 1.09278318162014 84 
21.81939113866225 1.11737373706779 4 
22.95080495008893 1.15786184931141 1 
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